AI Roadmap Workbook for Non-Technical Business Leaders
A clear, hype-free workbook showing the real areas where AI adds value — and where it doesn’t.
The Dev Guys — Built with clarity, speed, and purpose.
Purpose of This Workbook
Modern business leaders face pressure to adopt AI strategies. Everyone seems to be experimenting with, buying, or promoting something AI-related. But many non-technical leaders are caught between extremes:
• Saying “yes” to every vendor or internal idea, hoping some of it will succeed.
• Saying “no” to everything because it feels risky or confusing.
It provides a third, smarter path — a clear, grounded way to find genuine AI opportunities.
You don’t have to be technical; you just need to know your operations well. AI is only effective when built on your existing processes.
How to Use This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A clear order of initiatives instead of scattered trials.
Treat it as a lens, not a checklist. If your CFO can understand it in a minute, you’re doing it right.
AI planning is business thinking without the jargon.
Starting Point: Business Objectives
Start With Outcomes, Not Algorithms
The usual focus on bots and models misses the real point. Non-technical leaders should start from business outcomes instead.
Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?
AI matters when it affects measurable outcomes like profit or efficiency. Only link AI to real, trackable business metrics.
Leaders who skip this step collect shiny tools; those who follow it build lasting leverage.
Step 2 — See the Work
Map Workflows, Not Tools
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Pose one question: “What happens between X starting and Y completing?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.
Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Rank and Select AI Use Cases
Assess Opportunities with a Clear Framework
Evaluate AI ideas using a simple impact vs effort grid.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Reserve resources for strategic investments.
• Minor experiments — do only if supporting larger goals.
• Avoid for Now — low impact, high effort.
Consider risk: some actions are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Balancing Systems and People
Fix the Foundations Before You Blame the Model
Without clean systems, AI will mirror your chaos. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Human Oversight Builds Trust
Let AI assist, not replace, your team. Over time, increase automation responsibly.
The 3 Classic Mistakes
Avoid the Three AI Traps for Non-Tech Leaders
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Full Automation Fantasy — imagining instant department replacement.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Collaborating with Tech Teams
Frame problems, don’t build algorithms. Focus on measurable results, not buzzwords. Share messy data and edge cloud infrastructure cases so tech partners understand reality. Agree on success definitions and rollout phases.
Request real-world results, not sales pitches.
Evaluating AI Health
Indicators of a Balanced AI Plan
Your AI plan fits on one business slide.
Your focus remains on business, not tools.
Finance understands why these projects exist.
Quick AI Validation Guide
Before any project, confirm:
• Which business metric does this improve?
• Which workflow is involved, and can it be described simply?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.